Spectrometric reconstruction of mechanical-motional states in optomechanics
نویسندگان
چکیده
We propose a spectrometric method to reconstruct the motional states of mechanical modes in optomechanics. This is achieved by detecting the single-photon emission and scattering spectra of the optomechanical cavity. Owing to an optomechanical coupling, the a priori phonon-state distributions contribute to the spectral magnitude, and hence we can infer information on the phonon states from the measured spectral data. When the singlephoton optomechanical-coupling strength is moderately larger than the mechanical frequency, then our method works well for a wide range of cavity-field decay rates, irrespective of whether or not the system is in the resolved-sideband regime.
منابع مشابه
Cooling-by-measurement and mechanical state tomography via pulsed optomechanics.
Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum non-demolition measurements were first introduced in the 1970s for gravitational wave detection, and now such techniques are an indispensable tool throughout quantum science. Here we perform measurements of the position of a mechanical oscill...
متن کاملQuantum Optomechanics with Silicon Nanostructures
Mechanical resonators are the most basic and ubiquitous physical systems known. In on-chip form, they are used to process high frequency signals in every cell phone, television, and laptop. They have also been in the last few decades in different shapes and forms, a critical part of progress in quantum information sciences with kilogram-scale mirrors for gravitational wave detection measuring m...
متن کاملCavity Optomechanics at Millikelvin Temperatures
The field of cavity optomechanics, which concerns the coupling of a mechanical object’s motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical o...
متن کاملCoherent control and feedback cooling in a remotely coupled hybrid atom–optomechanical system
Cooling to the motional ground state is an important first step in the preparation of nonclassical states of mesoscopic mechanical oscillators. Light-mediated coupling to a remote atomic ensemble has been proposed as a method to reach the ground state for low frequency oscillators. The ground state can also be reached using optical measurement followed by feedback control. Here we investigate t...
متن کاملWigner Function Reconstruction in Levitated Optomechanics
© 2017 Muddassar Rashid et al., published by De Gruyter Open. This work is licensed under the Creative Commons AttributionNonCommercial-NoDerivs 4.0 License. Quantum Meas. Quantum Metrol. 2017; 4:17–25 Research Article Open Access Muddassar Rashid, Marko Toroš, and Hendrik Ulbricht* Wigner Function Reconstruction in Levitated Optomechanics https://doi.org/10.1515/qmetro-2017-0003 Received July ...
متن کامل